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Abstract. A method for constructing stable Proper Orthogonal Decositjpan (POD)/Galer-
kin reduced order models (ROMSs) for compressible flow isriest. The proposed model
reduction technique differs from the approach taken in mewplications in that the Galerkin
projection step is applied to the continuous system of ghdiiferential equations (PDES),
rather than a semi-discrete representation of these equatilt is demonstrated that the inner
product used to define the Galerkin projection is intimatedg to the stability of the resulting
model. For linearized conservation laws such as the liresdicompressible Euler and lin-
earized compressible Navier-Stokes equations, a symmnatrgformation leads to a stable
formulation for the inner product. Preservation of statyilfor the discrete implementation
of the Galerkin projection is made possible using piecewiseoth finite element bases, and
a weak enforcement of the boundary conditions. The staliftitl accuracy of the proposed
model reduction approach is studied in the context of twbodases: the problem of an in-
viscid pressure pulse in a uniform base flow, and a viscousiantavity problem. For the
second inherently non-linear test case, the non-lineaadyios of the flow are captured in the
POD reduced basis modes, but not in the equations projecttrltbese modes, as the ROM
equations are based on a local linearization of the full Hiorear flow equations.

Keywords: Reduced order model (ROM); proper orthogonal decompas{fiROD)/Galerkin
projection; compressible Navier-Stokes equations; energthod; numerical stability.

1. INTRODUCTION

Many engineering problems that are of interest in presagitaghplications require the
simulation of complex systems possessing many degreeseddm (DOFs). One area that
presents many tough challenges for scientific computints tbecause of the large systems
that arise is computational fluid dynamics (CFD). Despitprioved algorithms and increas-
ingly sophisticated computational tools, “high-fidelit¢FD models for three-dimensional
(3D) unsteady flows at high Reynolds and Mach numbers are tfte computationally ex-
pensive to be used in a design or analysis setting.



In recent years, reduced order modeling has proven to be arfidvwool that can
enable real or near-real time analysis in areas that hadéitraally relied on high-fidelity
modeling approaches. The basic idea of model reductionrigpiace a large system associ-
ated with a high-fidelity simulation by a system that is muctalier, but that is nonetheless
capable of capturing, at least approximately, the esdehtizamics of the original system.
Examples of reduced order model (ROM) approaches propogbuohwthe past decade, each
with its own inherent strengths, are the reduced basis rdgiltg 24, 25], balanced truncation
[27, 28], balanced proper orthogonal decomposition (P@B),[moment-matching [30], and
goal-oriented ROMs [16]. The attractiveness of ROMs in mtage settings has prompted
improvements in model-reduction methodologies for appions such as flow controller de-
sign [17, 21, 42], shape optimization [22], and aeroelasttbility analysis [18, 23]. It has
also motivated the development of approaches for adaptexg@mputed ROMs to changes
in physical and/or modeling parameters [17, 21, 18, 23, @B, 2

In any application, it is important for a ROM to preserve agrtcrucial properties of
the original system. This is especially the case if the ROMsnded use is in a predictive set-
ting. Many model reduction techniques in fluid mechanicsather applications are derived
from the proper orthogonal decomposition(POD)/Galerkinjgrtion approach. In this ap-
proach, a reduced basis is computed by performing a singallae decomposition (SVD) on
a matrix containing as its columns a small number of snagshdtacted from a high-fidelity
simulation. The set of governing partial differential etjoas (PDES), or a semi-discrete rep-
resentation of these equations, is then projected onte tieekiced basis (POD) modes. The
result of this procedure is a dynamical system of ordinaifeintial equations (ODES), from
which the ROM solution is obtained.

The ROM dynamical system may be viewed as an alternativeatization of the gov-
erning PDEs. As such, it is desired to possess the fundahrmenteerical properties required
of any numerical scheme, namely stability, consistencyamyergence. For a compressible
flow POD/Galerkin model, general results regarding any e$éproperties are lacking [16].
Stability in particular can be an issue. A ROM constructadtie equations of compressible
flow using the classical POD/Galerkin approach might belstiao a given number of modes,
but unstable for other choices of basis size [16, 1, 2, 3, 8lis Teads to obvious practical
limitations of the model: the ROM solution can blow up in fenttme.

The aim of the current work is to present a model reductiom@ggh based on Galerkin
projection that is guaranteed to result in a stable ROM ferdtpuations of compressible flow.
At the heart of this stable formulation is the idea that a ROMstrbe constructed to retain
a proper energy balance [31, 32, 28]. Mathematically, trerggnis expressed as an inner
product. In [1, 2, 3, 8], it was demonstrated by the first aytk@lashnikovaget al. that
the stability of the Galerkin projection step of a ROM is @lbystied to the stability of the
resulting model. In these earlier works, attention was $sed on the linearized compress-
ible Euler equations. An energy stability analysis carpnadfor Galerkin methods applied to
these equations resulted in the construction of an innelymtthat guarantees certain stabil-
ity bounds satisfied by the ROM. ROMs developed using thisaaah were guaranteed, by
construction, to remain stable not only for the POD basisfdnanychoice of reduced basis.

In the present work, the earlier analysis [1, 2, 3, 8] is edéghto the linearized



compressible Navier-Stokes equations. It is demonstidiaidthe key ingredient to a sta-
ble Galerkin ROM for this equation set is once again a propeice of inner product for
the Galerkin projection step of the model reduction. Therappate inner product for this
equation set is derived, and a stability-preserving imgletation of the proposed ROM is de-
veloped. As a first step towards a stable and efficient modelteén approach for non-linear
compressible flow problems, the viability of a ROM constedtctor the full non-linear com-
pressible Navier-Stokes equations based on a local lregarn of these equations is studied.
In this approach, the non-linear dynamics of the flow arewapkin the POD reduced basis
modes, but not in the equations projected onto these modesmEthod is hence similar in
flavor to the method of localized linear reductions [34], bolike other non-linear model re-
duction approaches based on non-linear equations (gappyni&hod [33], “best points” in-
terpolation method (BPIM) [36], Gauss-Newton with Appnmgted Tensors (GNAT) method
[35]).

The remainder of this paper is organized as follows. The @opusof viscous com-
pressible flow are given in Section 2. The POD/Galerkin agginoto model reduction is
reviewed in Section 3. A method for constructing a Galerk@MRfor the linearized com-
pressible Navier-Stokes that is guaranteed to satisfy sgmnieri stability bounds is described
in Section 4. In Section 5, the performance of the proposedieimeduction approach is eval-
uated on two test cases: the problem of an inviscid pressuse p a steady base flow, and a
viscous laminar cavity problem. Comparisons are made to ROdAstructed using the clas-
sical Galerkin/POD approach, which lacks amriori stability guarantee. Conclusions are
offered in Section 6.

2. EQUATIONSFOR COMPRESSIBLE FLOW

The Navier-Stokes equations are the fundamental PDEs farithng viscous fluid
flow. In 3D, the compressible form of these equations can higenras [13]:

pZa = 50 18%_ p(Ge + 52 ) + A0,V u
Pl = Y (52452 ) + A0V
pla =2 30 Rl g%ﬁg?“; + A5,V -y, 1)
pCy [c)lf =—-pV-u+ Ei:l o <’€g£> ’
57 = —pV -,
where
9—%+ V. 2)

In(1),u” = (w, us, us ) isthe fluid velocity vector] is the fluid temperature, andis
the fluid density. The symbols and )\ are the so-called Lamé constants, assumed to satisfy
Stokes’ hypothesis:

2
At gu=0. 3)

The symbolx is the thermal diffusivity, and the symbadl, is the specific heat at constant
volume, assumed herein to be constant.



An important dimensionless parameter associated withs(ithe Reynolds number,

denoted byRe and defined as:
Pe = POU0L7 @
Ho

wherepy, 1o andU, are reference values for the density, viscosity and veloegpectively,
and L is a reference length scale for the domain of the problemidered. In the limit
Re — oo (or the case whep = A\ = k = 0), the equations (1) reduce to the (inviscid)
compressible Euler equations, a quasi-linear hyperbgstesn. For finite values oRe, the
system is known as incompletely parabolic [12].

Whenu, A\, k # 0, that is, when viscosity is prevalent in the flow, approgrislid-
wall boundary conditions for the equations (1) are the

no-slip boundary condition: u=0, on oy,
adiabatic wall boundary condition¥V7 -n =0, onoQy,

(5)

whereod)y, denotes a solid-wall boundary of the dom&lron which the equations (1) are
posed, anth” = ( ny, ny, ny ) denotes the unit normal @y .
Whenu = A = k = 0, that is, when the flow is assumed to be inviscid, so that the
equations (1) reduce to the compressible Euler equatioreppropriate solid-wall boundary
IS the
no-penetration boundary condition:u - n =0, 0onoQyy . (6)

In numerical approximations to (1), the computational dontaon which these equa-
tions are solved is by construction finite, in contrast toittimite physical space on which an
initial boundary value problem (IBVP) for (1) may be definéids often desirable to prescribe
boundary conditions on the artificial far-field boundarylod tomputational domain, denoted
by 0. An appropriate far-field boundary condition is one that sulppress the reflection of
waves from the outer computational domain boundary. Thisbeaaccomplished by setting
the components af’ corresponding to characteristic waves traveling intm zero [1, 8].

2.1. Linearized Compressible Navier-Stokes Equations

The model reduction approach presented in the present gobased on a local
linearization of the full non-linear compressible Navi&orkes equations (1). In general,
the linearized compressible Navier-Stokes equations pjpeoariate when a compressible
fluid system can be described by viscous, small-amplitudeifmtions about a steady-state
mean (or base) flow. To derive the linearized counterparhefsystem (1), the state vector
q" = (w1, u, us, T, p) €R’isdecomposed into two parts: a steady mgé) and
an unsteady time-varying fluctuatiefix, t). Mathematically,

q(x,t) = a(x) + q'(x, 1), (7)
wherex” = ( Ty, T, X3 ) is the position vector. Linearizing the full equations (i9und
the steady mean (or base) stgtehe following equations for the fluctuatiey are obtainetl
[12, 13]:

d; + A — [Kyd]: =0, (8)
'From this point forward, the so-called Eisenstein notafiowplied summation on repeated indices) is em-
ployed.
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In deriving (8), the ideal gas law

(15)
R

p = pRT,

10

>

whereR is the universal gas constant, has been employed. In additie identityC, =

wherey is the ratio of specific heats, has been invoked.

The equations (8) are known as the linearized compressilgeNStokes equations.

WhenK;; = 0fori,j = 1,2, 3, (8) reduces to the linearized compressible Euler system.



2.2. Symmetrized Linearized Compressible Navier-Stokes Equations

A key property of the incompletely parabolic system (8), dima&t is critical to the
formulation of a stable Galerkin ROM for these equationghat it is symmetrizable [12,
11]. In other words, there exists a symmetric positive difimatrixH = H(q) so that the
following two properties hold:

1. The convective flux matrices
A% =HA,, fori=1,23, (16)
are all symmetric.

2. The following augmented viscosity matrix

HK;; HK;; HKj;
KS = HK21 HK22 HK23 s (17)
HK3 HKj;, HKas

is symmetric positive semi-definite {K*v > 0 for all vectorsv).

To demonstrate that the system (8) is symmetrizable, a syna@ematrix H such
that the two properties listed above are satisfied is exddbiConsider the following matrix:

p 00 O 0
0p0 0 0
HEOOP% 0 (18)
_pr
000 7 0
000 0 %

Let AY = HA, andKfj = HK,; denote the symmetrized convective and viscous flux matri-
ces respectively, for, ) = 1,2,3. Some linear algebra reveals that, wkihdefined by (18),
these matrices are given by:

piy 0 0 pR  RT piz 0 0 0 0
0 pu; O 0 0 0 puy O pR  RT
AS=| 0 0 pm Rg 0 . AS=| 0 0 pa Rg 0 7
pR0 0 g 0 0 AR 0 g% 0
RT 0 0 0o fm 0 RT 0O 0o A
pus 0 0 0 0
0 pus O 0 0
AS = 0 0 pus pR RT |
= Rpus
0 PR 1oy 0
0 0 RT o fm
(19)
and
20+XA 0 0 0 0 0 A0 OO 00 A OO
0 p 0 00 p 0 0 00 00000O
K{| = 0 0 O0O0], KHh=]100000], Kih=|p0000
0 00 %0 00 00O 0000O
0 00 00 0 000O 00000
(20)



0 000 p 0 0 0 0 00000
A0 00 0 0 2u+XA 0 0 O 00 X0 0
Ky=[o0oo0oo0oo0o0]f, Kh=[0 0 wxwo0o0]|, Ksy=|0uo000],
00000 0 0 0 £ 0 00000
00000 0O 0 00 0 00000
(21)
00 p 00 00000 pw 0 0 00
00000 00 u 00 O p 0 00
K= x0000]|, Kh=[0X000]|, KHs=|[002u+X 0 0
00000 00000 00 0 £0
00000 00000 00 0 00
(22)

It is clear that the convective flux matricds’ (19) are symmetric, foi = 1,2, 3. The reader
may verify that the augmented symmetrized viscous flux ma€i (17), with submatrices
given by (20)—(22), is symmetric positive semi-definite.

It is noted that any matri¥ that symmetrizes the viscous equations (8) is also a valid
symmetrizer for the inviscid counterpart of these equati(8) withK;;, = 0 for i,j =

1,2, 3). The converse inotin general true, however. That is, a symmetrizer for thedirzed
compressible Euler equations is not necessarily a synaeefor the linearized compressible
Navier-Stokes equations.

3. THE POD/GALERKIN APPROACH TO MODEL REDUCTION

Before describing the proposed model reduction approadiried overview of the
POD/Galerkin method for reducing the order of a complex majsystem governed by a
general set of PDEs is provided. The approach consists otsyas, summarized in Sections
3.1 and 3.2 below.

3.1. Calculation of a Reduced Basisviathe Proper Orthogonal Decomposition (POD)

The first step in the POD/Galerkin method for model reducisaime calculation of a
reduced basis using the POD of an ensemble of realizationsdrhigh-fidelity simulation. In
effect, this step involves the transfer of kinematic infatiran from a high-fidelity simulation
to a relatively small number of modes. Discussed in detdilumley [14] and Holme®t al.
[15], POD is a mathematical procedure that, given an enseofldata, constructs a basis for
that ensemble that is optimal in the sense that it descrilmes Bnergy (on average) of the
ensemble than any other linear basis of the same dimendgioin the present context, the
ensemble{u®(z) : k = 1,..., K} is a set ofK instantaneous snapshots of a high-fidelity
numerical solution field. Mathematically, POD seeks/dndimensional {/ << K) sub-
spaceH™ () spanned by the sét;} such that the projection of the difference between the
ensemble/” and its projection ont@(* (2) is minimized on average. Itis a well known result
[1, 15, 10, 9] that the solution to this optimization problezduces to the eigenvalue problem
R¢ = A whereR = (u* ® v*) is a self-adjoint and positive semi-definite operator. t ca
be shown [15, 14] that the set &f eigenfunctions, or POD mode§yp; : i = 1,2,..., M}
corresponding to thé/ largest eigenvalues ¢ is precisely the set of;} that solves the
aforementioned POD optimization problem. Given this hasie numerical ROM solution



uys can be represented as a linear combination of POD modes

up (@, t) = Z a;(t)o;(x), (23)

Jj=1

where theu;(t) are the so-called ROM coefficients (or modal amplitudes)etsdived for in
the ROM.

3.2. Galerkin Projection of Governing PDEs onto Reduced Basis M odes

The second step in constructing a ROM involves projectimggbverning system of
PDEs onto the reduced bagis;} in some appropriate inner product, denoted generically (fo
now) by (-, -). In this step, the full-system dynamics are effectivelysiated to the implied
dynamics of the POD modes. If the governing system of equafiar the state variable vector

u has the form
ou

E :,CU—FNQ(U,U)—F./\/?,(U,U,U), (24)
where/ is a linear differential operator, and, and\; are (non-linear) quadratic and cubic
operators respectively, then the Galerkin projection &f) @nto the POD mode; for j =

1,2,....,Mis

(%’7 8g_tM) = (@5, Lunr) + (05, No(unr, unr)) + (65, Ns(uar, uar, uar)) . (25)

Substituting the POD decomposition @f; (23) into (25) and applying the orthonormality
property of the basis functions; in the inner product-,-) gives a set of time-dependent
ODEs in the modal amplitudes:

% = aj = ]l\]‘/%jl al(]\i[ij ‘C(?ﬁ)) + Zl]\/:jl Z?’]]\’/{:l alam(¢j7NZ(¢lv ¢m)) (26)
+ Zl:l Zm:l anl alaman(¢j7 -/\/’3(¢l7 ¢m7 ¢n))7

forj =1,2,..., M. This ROM dynamical system accurately describes the flovathyos of
the full system of PDEs for some limited set of flow conditions

3.3. Continuous vs. Discrete Projection

As suggested by equations (25)-(26) and as will become appiar Section 4, the ap-
proach proposed in the present work, termed the “continponjection” approach, is based
on a Galerkin projection of theontinuousgoverning PDEs onto the reduced basis modes.
Many POD/Galerkin applications are based on the so-calligztfete projection”, in which
the semi-discrete representation of the governing equattoprojected, and numerical analy-
sis proceeds from the perspective of a dynamical system &< Dhe continuous projection
approach has the advantage that the ROM solution behawvidseaxamined using methods
that have been used for numerical analysis of spectral [@n8]finite volume [4, 7] approxi-
mations to PDEs. This makes possibleagpriori stability analysis using the energy method
(Theorem 4.1). Note that, in the continuous projection agph, boundary condition terms
present in the discretized equation setr@oein general inherited by the ROM, and therefore
may need to be implemented in the ROM (Section 4.2).



4. A STABILITY-PRESERVING POD/GALERKIN MODEL REDUCTION APPROACH
FOR LINEARIZED COMPRESSIBLE FLOW

The discussion of the Galerkin projection step of the modeduction in Section 3.2
has assumed a generic inner product). In the classical POD/Galerkin method, this inner
product is taken to be thE*(Q) inner product. For the incompressible Navier-Stokes equa-
tions, this choice of inner product is appropriate, and giilte rise to a stable POD/Galerkin
ROM. The reason for this is that, for this equation set, tHetsm vector is the velocity vec-
tor u, and||u|| 2 is @ measure of the global kinetic energy in the donfainThe L*(()
inner product is therefore physically sensible for thesgaéiqns: the POD modes optimally
represent the kinetic energy present in the ensemble froichwhey are generated.

The stability of the Galerkin projection of a PDE system in\a&eg inner product can
be studied using the energy method, reviewed briefly hereasider the following Cauchy
problem for a scalar PDE

Gu =Lu, x€eR" t>0,

u(x,0) = f(x),
where/ is a linear spatial differential operator. The basic idethefenergy method [12, 37]
is to define the energy of a solutiento (27) in an inner produdt, )z with corresponding
norm|| - ||z as

(27)

and attempt to derive a bound of the form
L s < allulls, o €R (29)
5% U\ S Ol|\U||E, « .

If such a bound can be shown, the operd@@ semi-bounded with respect to the inner product
(-,-)E, and the Cauchy problem (27) is well-posed. Consequen@®alarkin approximation
to u, denoted by, will satisfy the energy estimate

1d

Sl < alluylls, a€R, (30)

so that, by Gronwall's lemma,
lun(x,0)|[E < e*[Jun(x,0)|[z, V= 0. (31)

The practical implication of the result (31) is that if theeegy inner product:, -) ¢ is selected
for the Galerkin approximation, the resulting numericabiton will be bounded in a way that
is consistent with the behavior of the exact solutions ofahiginal PDE, i.e., it will be stable.

It turns out that the.?($2) inner product does not correspond to an energy integral for
equations otompressibldlow, such as the ones considered herein [1, 2, 3, 8]. Theipaact
implication of this fact is that if thel?(Q2) inner product is selected as the inner product
defining the projection, the resulting ROM will not satishetenergy conservation relation
implied by the governing equations, and may exhibit an ltg that is inconsistent with
the physics inherent in the governing continuous PDEs [B8].alternate inner product, in
particular, one thas an energy inner product for the equations of compressible fcsought.



4.1. Stability-Preserving Symmetry Inner Product for the Galerkin Projection Step

As will be proven in Section 4.3, the energy inner producttfar system (8) is the
so-called “symmetry”, ofH, Q2)—, inner product, defined by:

(Vl, VZ)(H,Q) = / V{HVQ dQ, (32)
Q

for vi,vo,v € R®. The matrixH is precisely the matrix that symmetrizes the linearized

compressible Navier-Stokes system (8). Projecting thet{icoous) system of PDEs onto the

k' reduced basis mode fér= 1, ..., M in the (H, Q)—inner product gives:

/ ST o, dQ + / STAS(,de) / STTKS o ],d2 = 0, (33)
Q Q Q

where M is the total number of reduced basis modes. The norm comegppto the inner
product (32), referred to as tti&l, ©2)—norm, is given by:

V[l =1/ (v, V)@0- (34)

(34) defines a valid norm, as the symmetrizer mdkfixss symmetric positive definite.

4.2. Stability-Preserving Weak | mplementation of Boundary Conditions

As mentioned in Section 3.3, a Galerkin ROM based on the ©oatis projection
approach does not necessarily inherit boundary condigomg present in the discretized
equation set from which the ROM is constructed. An efficiemliementation of the boundary
conditions for a Galerkin ROM is through a weak formulatiofor illustration purposes,
attention is restricted to a solid-wall boundary of the dom@, on which the no-slip and
adiabatic wall boundary conditions (5) are imposed. FHing& system of PDEs (8) is projected
onto thek' reduced basis mode in tH&l, 2)—inner product, as done in (33). Next, the
viscous terms in (33) are integrated by parts:

/Q ST(KS ) A0 = — /Q ST KSo(d + /8 SISl (35)

Vv
W
=1y

Finally, the vector specifying the boundary condition isdrted into the boundary integral
overof) that arises. Some simple linear algebra reveals that

(20 + Aul g + plug + usz)lng + (Auh  + puy o)ng + (Augy + pud 5)ns
(Mulz,l + )‘u/1,2)n1 + [:u(ull,l + u%:s) + (2 + )‘)ulz,Q]W + ()‘u%g + NU,2,3>7L3

Kzsgqlzny = | (pugy 4 Mg g)nn + (s + Mg g)ng + [p(u g + uh,) + (20 + Aus lns
EVT -n
0
(36)

Substituting the adiabatic wall boundary condition (5) asduming the reduced basis modes
¢, satisfy the no-slip condition ofi€2yy, it follows that

)

ngjq'Zn] = 0. (37)



Substituting (37) into (35), the following Galerkin-profjed ROM formulation with boundary
conditions is obtained:

/ oL Hq,dQ) + / érAqdQ+ / ér Kid;dQ = 0. (38)
Q

The ROM matrix problem is obtained by inserting the modalodegositionq’ ~ ¢}, =
SM a;(t)gs(x) into (38) (Section 5.1).

4.3. Proof of Energy-Stability of the Symmetry Inner Product

The present section provides a proof of the energy-staloitithe Galerkin projection
step of the model reduction procedure in (& Q2)—inner product, assuming a weak imple-
mentation of the boundary conditions (5) following the gdare outlined in Section 4.2. The
far-field boundary condition ofS2 is not considered as it is stable by construction (proven
in [8]).

Theorem 4.1. Consider a bounded domainh C R? with Lipshitz-continuous boundary solid-
wall boundaryo(y,. Assume the modes; and the base flow satisfy a no-slip condition on
0Qyy (the first condition in(5)). Then the Galerkin projection dB) with boundary conditions
(5) is “energy-stable” in the symmetry inner produ@2), with energy estimate

1
I/ Tl < exp {307 } a0l (39)

where/3 is an upper bound on the eigenvalues of the matrix

O(HA,;)

X

B=HT/? H/2, (40)

Proof. By Definition 2.11 in [37] (repeated in the Appendix), to shetability of the Galerkin
projection of (8) in thé H, Q2)—inner product, it is sufficient to show that the energy aisded
with this projection is semi-bounded in the associglddS2)—norm. Defining the energy as

E = |d]|@0), (41)

the following bound orfZ is obtained:

= Jold q;

= —fg[q]THAzq A2+ Jold T HIK ] A

=1 [ 2 ([q]"HAq'dQ) dQ+ Lfold TBHA q'dQ — [,[a;]"HK;qdQ
+f89[q] Kzngnjdr

= =1 [oold " ASniq/dl + § [, )" 2520 q/dQ — [, [o/;]THK ;qdQ

_'_fag[q] szqznjdr
(42)

2The shorthandM /)T = M”/2 is employed, wherd/ is a positive definite matrix arlil'/? is its square
root factor, so thaM = M”/2M /2,



In going from lines 3 to 4 of (42), the symmetry property of tA¢ matrices has been em-
ployed. Assuming the base flow satisfies a no-slip boundangition at the wall, so that
u-n =20,

0 0 0 pRny RTny )
0 0 0  pRny RTn, )
Adn,q = 0 0 0  pRns RTns uy |- (43)
ﬁRnl ﬁRng ﬁRng 0 0 T’
RTny, RIn, RTns 0 0 o

Assuming that the reduced basis modes satisfy the no-slipdayy condition, it follows that
[ A niq =0, (44)

on 0Qy. Substituting (44) and (37) into (42), and using the fact t§a (17) is positive
semi-definite, one has that:

d / /Ta(HAi) /
- < Sl 73 )
Glldllone < | [a) 252 g (45)

Applying Gronwall’s lemma to (45) gives (40). O

The energy estimate (40) establishes the semi-boundedhéss governing spatial
differential operator defined in (8) in th&1, (2)—inner product. A direct consequence of this
result is that the Galerkin projection step using the synynener product is guaranteed to
produce a stable ROM, provided well-posed (stability-preing) boundary conditions are
prescribed.

It is noted that the proof of Theorem 4.1 holds for the lineadi compressible Euler
equations — that is, equations (8) wjih= A = x = 0. The symmetrization presented in this
paper for the linearized compressible Navier-Stokes égusthus encompasses the viscous
as well as inviscid case, and is hence more general thatitfiearsymmetrization approach
developed for the linearized compressible Euler equafibria, 3, 8]. For the inviscid variant
of (8), care must be taken to implement the appropriate bayrwbnditions (no-penetration at
a solid wall (6)) in a way that preserves the stability of tl@NR For a detailed discussion of
a stability-preserving implementation of inviscid boungdaonditions, the reader is referred
to [8].

5. NUMERICAL EXPERIMENTS

The model reduction based on the POD method and Galerkiagiiop of the continu-
ous linearized compressible Navier-Stokes equationsisyimmetry inner product described
in the previous sections is now evaluated on two test casephBsis is placed on reproducing
a given CFD solution for a single set of flow conditions in d#&taand accurate fashion. This
is viewed as an essential prerequisite for applying the atktih more complex situations, and
employing the ROM in a predictive setting.



5.1. Implementation of the ROM

Prior to evaluating the ROM'’s performance, some key detdilse implementation of
the ROM are described. The ROM can be thought of as consistitvgp stages: an “offline”
construction stage, and an “online” solution stage.

In the offline stage of the model reduction, the ROM matrixigheon is assembled.
Substituting the modal decompositigh~ ¢/, = Z%Zl any, (t)e,, into (38) and employing
the fact that the POD modes are by construction orthonorm#ie (H, Q2)—inner product
yields the following linear dynamical system

a=Ca, (46)

where
Cun == [ $EAZG a0~ [ O KS0s00, @)

fork,m =1, ..., M, with M denoting the number of reduced basis modes. The offline sfage
the ROM is implemented in a C++ code that uses distributetbvend matrix data structures
and parallel eigensolvers from the Trilinos project [39ivéh a set of snapshots from a high-
fidelity simulation stored at the nodes of an underlying m#sk code computes a POD basis
by solving the POD eigenvalue problem described in Sectidnu3ing eigensolvers from
the TrilinosRBGen library. Within this code, the POD basis functions are iptéated using
piece-wise linear finite element shape functions, and th&érmeous Galerkin projection of the
governing equations onto these POD modes is performedhEdsalerkin projection step of
the model reduction, a numerical quadrature operator Reatly integrates the relevant inner
products (47) is constructed with the help of thebnesh finite element library [40].

Although computationally intensive, as it requit@$N') operations, wheré/ is the
number of grid points in the high-fidelity simulation, thdlimie stage of the model reduction
is performed only a single time to yield thd x A ROM dynamical system matri (47).
Given this matrix, the online stage of the ROM begins. In #iege, the ROM dynamical
system (46) is integrated in time using a classical timegrdtion scheme, such as the Runge-
Kutta method. In contrast to the offline stage of the modelcé&dn, the online stage is
fast, cheap, and can be performed for on-the-spot compotatas it scales likd/, where
M << N is the small number of reduced basis modes.

The approach outlined above, described in more detail irejijures that the stability
results of the analysis in Section 4.3 are preserved by sweate implementation. Moreover,
it makes the ROM potentially compatible with any CFD codet ten output a mesh and
shapshot data stored at the nodes of this mesh.

For the results presented in the following two subsectithreshigh-fidelity fluid simu-
lation data were generated using a Sandia in-house finiteneflow solver known as SIGMA
CFD. This code is derived from LESLIE3D [41], a Large Eddy Slations (LES) flow solver
originally developed in the Computational Combustion Liabory at the Georgia Institute of
Technology. LESLIE3D solves the turbulent compressibles fimuations using an explicit
2-4 MacCormack scheme. A hybrid scheme coupling the Mac@okmnscheme to flux dif-
ference splitting schemes is employed to capture shockspafallel execution, a Schwartz
overlap algorithm with ghosting is used, with the MPI libyarroviding routines for exchang-
ing information in the overlap regions. For a detailed digsion of the schemes and models



implemented within LESLIE3D, the reader is referred to [48]. The SIGMA CFD flow
solver is an extension of LESLIE3D that includes the follogvmajor modifications:

1. Extension of the time marching scheme options to includarglicit time marching
scheme.

2. Addition of a higher order reconstruction based Roe flireste and a low dissipation
skew symmetric scheme.

3. Addition of RANS turbulence models: — ¢, k — w and SST turbulence models in
addition to the one-equation subgrid kinetic energy badefl inodels in LESLIE3D.

4. Implementation of SST-DES and Hybrid RANS-LES models.
5. Implementation of a wall layer model for LES applications

In addition to these changes, various code cleanups, gioapion of the data structures, gen-
eralization of the parallel decomposition, as well as pgrto large clusters and thousands of
processors have been carried out by the authors. Variousdaoy conditions necessary for
the range of applications of interest to Sandia have also imeglemented in SIGMA CFD.

The ROM dynamical systems (46) were advanced forward in tisneg a fourth order
explicit Runge-Kutta scheme, implemented in MATLAB, witetsame time step that was
used in the CFD simulation used to generate the ROM.

5.2. Inviscid Pressure Pulse

The first test case is that of a two-dimensional (2D) invisadustic pressure pulse in
the following prismatic domain® = (—1,1) x (—1,1) x (=1, —0.9) € R3. For this problem,
the base flow was uniform, with the following values:

= 101,325 Pa
T =300K
£ = 1.17kg/m? (48)
= Us uz = 0.0 m/S
¢ =348.0m/s.

In (48),¢ = \/vRT is the mean speed of sound. The problem was initialized witteasure
pulse in the middle of the domain:

P(x:0) = 141.9¢~ 106" +v%)
'(x:0) = p’(xiO)’
’ (T’(x)' 0) :ROT (49)
uy(x;0) = uy(x;0) = us(x;0) = 0.

In terms of the mean values, the amplitude of the initial gpues pulse (49) wa&0015¢2. The
computational grid for this test case was composed of 33@2s\aast into 9600 tetrahedral
finite elements within the ROM code. A no-penetration (sligljvboundary condition (6)
was imposed on all six sides of the domain. The high-fideligDGimulation from which



the ROM was generated was performed until tilhe= 0.01 seconds. During this simula-
tion, the initial pressure pulse (49) reflected from the svafithe domain a number of times.
Snapshots from this simulation were saved every 10~° seconds, to yield a total of 200
shapshots. These snapshots were employed to construct ad®R®D basis. Two different
procedures were used to generate a fluid ROM for this probtemmPOD/Galerkin method
with the (H, Q)— (symmetry) inner product, and the POD/Galerkin methodh wie classi-
cal L? inner product. Using both the symmetry and ttteinner product, the POD modes
captured essentially 100% of the snapshot energy.

Figure 1 shows a time history of the first two ROM modal amplés (circles) com-
pared to the projection of the full CFD simulation onto thstfitvo POD modes (solid lines)
for the symmetry (a) and? (b) ROMs. Mathematically, this figure compares as a funatibn
timet:

az(t) VS. (qé:FD7 ¢2)(H,Q) ) 1= ]-7 27 (50)

whereqggp is the high-fidelity CFD solution from which the ROMs were stmicted. The
reader may observe good agreement between the symmetry R@Nha full simulation
(Figure 1(a)) for the time interval considered. In contrasireement between tHg ROM
and the full simulation is reasonable only until approxietyat = 0.005 seconds (Figure
1(b)). The oscillations in thé? ROM modal amplitudes observed for> 0.008 seconds
suggest the presence of an instability in ffeROM.

20 Mode Symmetry ROM 20 Mode L2 ROM

0.04

10

O Mode 1
O Mode 2

. . . . . . . 4
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

t t

(a) 20 mode symmetry ROM (b) 20 modeZ? ROM

Figure 1. Time history of modal amplitudes for inviscid @ese pulse problem

Figures 2—4 compare the CFD pressure field (a) with the figdngtructed from the
symmetry (b) and.? (c) ROM solutions at = —1 and timest = 4.5 x 1074, 2.95 x 1073
and7.95 x 1073 seconds. At time = 4.5 x 10~* seconds, both the symmetry ahd ROM
solutions are in good agreement with the high-fidelity solu{Figure 2). At the later times,

t =2.95 x 1072 and7.95 x 10~2 seconds, there is a good qualitative agreement between the
high-fidelity solution and the symmetry ROM solution (Figa3—4(a), (b)). The same cannot
be said of the.? ROM solution at these later times, however. It is apparerhfFigure 4(c)

that theL? ROM solution has blown up by = 7.95 x 10~ seconds, which confirms the
instability of the 20 modé.? ROM suggested in Figure 1.
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Figure 2. Pressure field at time= 4.5 x 10~* seconds

5.3. Viscous Laminar Cavity

The second test case is that of a Mach 0.6 viscous laminar flewaocavity in al'—
shaped domaif = [(—2.9460, 4.5857) x (—0.4586,4.5857) x (0, 0.4586)]\[(—2.9460, 0) x
(—0.4586,0) x (0,0.4586)]\[(0.9171,4.5857) x (—0.4586,0) x (0,0.4586)]. The flow con-
ditions correspond to case L2 in [38]. The free stream pressas25 Pa, the free stream
temperature wa300 K, and the free stream velocity was 208.8 m/s. The free stgassure
was kept low to keep the Reynolds number of the flow low. Theosgy and thermal diffu-
sivity coefficients were, = 1.846 x 10~° kg/(m-s) andx = 2.587 x 102 m?/s respectively.
At the inflow boundaryr = —2.9460, a value of the velocity and temperature that is above
the free stream values was specified. The flow at the cavitg\fial= —0.4586, x = 0.9172,

=0,z =0, z = 0.4586) was assumed to be adiabatic and to satisfy a no-slip conditi
(5). The remaining outflow boundarieg € 4.5857, + = 4.5857) were open, and a far-field
boundary condition that suppresses the reflection of wauesthe computational domain
was implemented here. The simulation was started by iizitg the flow in the cavity to
have a zero velocity, free stream pressure, and temperdthesregion above the cavity was
initialized to free stream conditions and the flow was alldwe evolve. The snapshopts for
constructing the ROM were collected once statisticallyiatary conditions were reached in
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Figure 3. Pressure field at time= 2.95 x 10~3 seconds

the cavity. This was determined by examining the pressucéuftions at several locations on
the cavity walls.

In the high-fidelity viscous laminar cavity simulation, ttedl non-linear Navier-Stokes
equations (1) in the laminar regime were solved. The disg@tdomain consisted of 343,408
nodes, which were cast as 1,020,000 tetrahedral finite efesméthin the ROM code. The
high-fidelity CFD simulation was run until tim& = 0.2 seconds. Snapshots from this sim-
ulation were saved every x 10~3 seconds, to yield a total of 101 snapshots. From these
snapshots, a 30 mode POD basis was constructed usirdg tewell as the symmetry inner
product (Figure 5). As for the inviscid pulse problem, thes®les captured essentially 100%
of the snapshot energy for both ROM approaches.

Unlike the inviscid pressure pulse problem considered ctiGe 5.2, the viscous lam-
inar cavity problem is inherently non-linear, and does raggess a natural steady base flow
component. In constructing the ROM, the base flow was takée tihe average of the snap-
shots. The full compressible Navier-Stokes equations grevinearized around this steady
base flow to yield the linear system (8), and this system whsesyuently projected onto the
POD modes to yield the ROM dynamical system. In this approtehnon-linear dynamics
of the flow (vortical structures, for the viscous laminaritadlow problem) are captured in
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Figure 4. Pressure field at time= 7.95 x 10~3 seconds

the POD reduced basis modes (Figure 5), but not in the equsgtimjected onto these reduced
basis modes.

Since a ROM based on linearized equations cannot be expectegroduce all the
non-linear dynamics in the solution of an inherently noreér problem such as the viscous
laminar cavity problem, some discussion of what the ROM aaoh @nnot be expected to
capture is in order. The physics of the cavity flow are deteeuliby the shear layer over the
cavity. As the shear layer separates from the leading edtieeafavity, instabilities develop
in the separated shear layer. These instabilities growinearly to form vortices convecting
down the shear layer. This process is an inviscid instghgliowth process and arises due to
the non-linear terms in the convective part of the Naviekk&¢ equations. Since the ROM
is built using a linearized form of the Navier-Stokes equadi the ROM in its current form
cannot be expected to capture accurately this processhdfudbwnstream, the vortices im-
pinge on the aft wall of the cavity giving rise to pressure asthat are propagated upstream
through the free stream and the cavity. Depending upon tlyad¥ds number (and hence
the free stream dynamic pressure), these waves can ramgdifi@ar to non-linear. The lin-
ear waves (as is expected in this low Reynolds number case)dshe accurately captured
by the ROM. Since the pressure fluctuations on the cavitysveakt due to a combination of
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Figure 5. First four most energetic POD modes computed irsyh@metry inner product for
the viscous laminar cavity problem

these waves and those generated by the shear layer voittise=xpected that only the linear
reflected waves will be captured by the ROM.

Figure 6 compares the CFD velocity field (a) with the field reconstructed from the
symmetry (b) and.? (c) ROM solutions at time = 0.024 seconds and = 0. Figure 7
compares the CF@, velocity field (a) with the field reconstructed form the synimeb)
and L? (c) ROM solutions at a later time, = 0.076 seconds and = (0. The reader may
observe that there is a reasonable qualitative agreememede both ROM solutions and the
high-fidelity solution. The ROMs are not able to capture ihdetail the inherently non-linear
vortical structures present in the high-fidelity solutibnf this is to be expected of a model
based on linearized flow equations.

Figure 8 plots the real part of each eigenvalue of3thex 30 ROM dynamical system
matrix C for the 30 mode symmetry antf ROMs. The plot is am posterioricheck of the
stability of each ROM. The ROM is stable if the maximum reatt jgd the eigenvalues of the
ROM system matrix is non-positive. Figure 8 confirms that3bemode symmetry ROM is
stable. Although the 30 modge? ROM is not observed to go unstable for this test case, it is
clear from Figure 8 the stability of the? ROM is not guaranteed, as its system matrix has
eigenvalues with positive real parts.
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Figure 6. Velocity fieldu; at timet = 0.024 seconds

6. CONCLUSIONS

A method for constructing stable reduced order models fonmessible flow based on
the POD/Galerkin approach has been developed and testeatidn is focused on extending
the earlier analysis and model reduction methodology [B, 8] to the linearized compress-
ible Navier-Stokes equations, which were not considerepast work by the authors. For
these equations, a symmetry inner product is defined sutthéhapplication of the Galerkin
projection method in this inner product is guaranteed talpce stable ROMs for the gov-
erning equations. The proposed model reduction approamlalsated on two test cases: the
problem of an inviscid pressure pulse in a uniform base flowl, @ laminar viscous cavity
problem. For the first test case, there is a better quaktareement between the symmetry
ROM solution and the high-fidelity solution, than thé ROM solution and the high-fidelity
solution. Moreover, thé? ROM is observed to exhibit an instability, whereas the symnyne
ROM remains stable for all times considered. The authorgative in considering the sec-
ond test case is to study the viability of a model reductioprapach in which the non-linear
dynamics of the flow are captured in the POD reduced basis snaie not in the (locally
linearized) equations projected onto these reduced basiesn Results for this test case are
encouraging: there is a reasonable qualitative agreenetwebn the ROM solutions and the



0.8

0.6

0.4

0.2

-0.2

-0.4

Figure 8. Real parts of eigenvalues of ROM system mditifor viscous laminar cavity

problem

high-fidelity solution. Future work will focus on incorpdiiag into the ROM equations non-

-0.5

v velocity snapshot #39

30 mode Symmetry ROM

08
06
04
>
0.2
0
: ' !
-0.4
0 05 1 1.5 2 -1 -0.5 0 05 1 1.5
X X
(a) CFD (b) 30 mode symmetry ROM
30 mode L2 ROM
]
08
06
04
>
0.2
0
! J
-0.4
-1 -0.5 0 05 1 1.5 2
X

Figure 7. Velocity fieldu, at timet = 0.076 seconds

0.04

0.021

-0.02

Re(\)

-0.06 |-

-0.08

-0.1fF

-0.12

(c) 30 modeL? ROM

Real parts of ROM matrix eigenvalues for laminar cavity problem
T T T

-0.04

v 30 mode Symmetry ROM A
A 30 mode L2 ROM A
AN
vV v
vV |
AA vV XX vV AN AN
AL vy  Ylvv Ad
AN AAXX vV A
AL vy
v
\AY
VVAA
AA
| | | | |
5 10 15 20 25 30

eigenvalue #



linear terms in a stability-preserving and computatignalictable way. Future work will also
include a study of the predictive capabilities of the prag@bROM for long-time simulations,
as well as an investigation of the ROM’s robustness witheestm changes in the parameter
space.

APPENDI X
Consider the following semi-discrete problem:

W= Qui+Fy, j=1,2,.. N1,
Bru = g(t), 1)
u;j(0)=f;, j=1,2,...,N,

where() is a discretizing operato¥;; and f; are the discretized version &f and f respec-
tively, and B, u denotes the complete set of discretized boundary conditibet|| - ||;, be a
discrete norm.

Definition 2.11 in [37] The semi-discrete IBVP (51) stableif there is a unique solution
satisfying
ul, Olln < Ke™[[ £ ()|, (52)

where K and are constants independentfoandg.
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